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Main contrib ution:

Better low-complexity vector quantizers for memoryless Gaussian sources.



Quantization

A communications system:
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Ways to view a quantizer:
1. Analog to digital conversion
2. Signal/data compression

3. FunctionQ:R —R
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Quantiz er Design

Try to minimize distortion:

D = E[[X—Q(X)|]

Example: uniform source

0.5

Lloyd-Max algorithm repeats the following:
1. Nearest neighbor (fix outputs, move cell boundaries)

2. Centroid condition (move outputs, fix cell boundaries)

This will converge to locally optimal quantizer.






Vector Quantization

Group source samples into a vector, and quantize the whole vector.

Example: i.i.d. Uniform source, formed into 2D vectors

4 T T T - 1 T T T










Quantization Coefficient

The quantization coefficient: average MSE per dimension for high rate quanti-
zation of a uniform source (scaled so as to be a dimensionless quantity).
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Lattice VQ’s are good for uniform sources.

Dimension | Lattice | Quantization coefficient
k 7K %2 ~ 0.0833
2 A 3??@ ~ 0.0802
3 Az 0.0787
3 A 0.0785
24 Noy 0.0658
— 00 optimal: = ~ 0.0586
Note: maximizing packing density = minimizing MSE
Dimension Best known Densest known
lattice quantizer lattice
2 AE Ao
3 AS Ag
4 D} D4
5 DE Ds
6 = Es
7 E; E;
8 E§ Es
24 ’54 Nog




Implications of Shannon’s Theorem

Good News:

Shannon’s source coding theorem w.r.t. a fidelity criterion says that all k-dimensional
quantizers Q(-) satisfy

1

LEIX=Q(X)*> D(R
and there is a sequence of quantizers such that

1 2

KElIX=Q(X)[|" = D(R)

as k — o, where Ris the rate of the quantizer (i:log,M), and where D(R) is
the distortion-rate function.

Bad News:

Computational complexity of encoding is
M = 2Rk

l.e., exponential in both rate and dimension.



A Memoryless Gaussian Source

Let X = (Xy,...,Xk), where X ~ N(0, 5?).

In two dimensions (k = 2, 0% = 1):
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Properties of a Memoryless Gaussian Source

If X = (Xq,...,%), X ~ N(0,0%), and if Y = (y1,...,Yk), then
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Lemma: The pdf of g = [|X|| is

2rk= 1exp<20§)
W)= Fk2) 20?7

Proof:

(1) = /” o Y = M- /” OV

S(rk—l
0.7 T T T T
k=2 —
k=3 ----
k=10 -----
k=25 i
k=50 ---
g
6 . 8 10

13



Variance of || X]|

[ Recall, X = (Xy,... , %), where X; ~ N(0,0?).]
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Lemma: var||X|| < /2 for all k.
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Motiv ation for Spherical Vector Quantization

Q) ~

Xp
E[[X]]

O

Sakrison showed (also stated as Eq. (6.6))

1
D = ZEIX-QX)|?

= LEIX— QOO+ L EIX = X2
var|| X||

= Ds+ Dy

~ Ds, for large k



Spherical Vector Quantization

Previous work:

Geometric development (Sakrison, '68)

Polar Quantizers (Bucklew & Gallagher, 79, Wilson, '80)
Spherical coordinates quant. (Swaszek & Thomas, '83)
SVQ for speech coding (Adoul, Lamblin, & Leguyader, '84)
Asymptotic Polar Quantizers (Swaszek & Wu, '86)

Non-Gaussian distributions (Fischer, '86, '89)
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Wrapped Spherical Vector Quantiz er

o>
>

Shape-gain approach: g = || X||, and S= %
' Shape
‘ Quantizer
. Gain
Quantizer

Gain codebook: scalar quantizer optimized by Lloyd-Max algorithm.

Shape codebook: wrapped spherical code, without buffer regions
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Definition of spherical code

Definition: A k-dimensional spherical code is a set of points which lie on the
k-dimensional unit sphere.

-
B

2 dimensions 3 dimensions

Examples:

In kK dimensions:

CCQU=1{(X,..., %) ¥ x=1}.
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Wrapped spherical code construction

Yaglom’s mapping: Project the best (k— 1)-dimensional packing onto Qy.

Intuition: use Yaglom-type mapping, but with less distortion.

'l
-
Y
-
A0S0 S0N
00020
> > < > A.v A’J
A.v A.v A.v A.v < >\
> A.v <{ P> A.v < > A.,
LA
CH -
A.v A.v A.v A.v < >
Oa0a020o0aV/
020202020
NS 020202057
A.v A.v A.v A.v A’\
089399
> > A.
SN
—

b

Partition Qy into annuli:
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Wrapped spherical code construction

Within each annulus, introduce only small distortion:

Theorem: The quantization coefficient of a wrapped spherical code is within
O(\/a) of the quantization coefficient of the underlying packing used to con-
struct it.
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Example of wrapped spherical code
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Shape-Gain Rate Allocation

1
R = Elogz[(Gain CB size) x (Shape CB size)]
1 , : 1 :
= X log,(Gain CB size) + K log,(Shape CB size)
= Rg + Rg
SQNR as a function of gain codebook size:
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Gain codebook size

Optimize rate allocation by maximizing SQNR using numerical methods.



Inde x Assignment

Source

samples index index Output

—  Encoder - Channel - Decoder ——
X i i Q(X)

Method to determine index, given Qé

1. Off-line, compute the number of codepoints in each annulus. Let P; de-

the shape codebook.

2. Map Sto lattice point g € Rk using function from wrapped spherical
code definition.

3. Identify index of q using lattice indexing algorithm. Suppose it has the |th
lowest index among points in the annulus.

4. Let § be the ith lowest gain output level.

5. The index isiP+< ;;éPa> +1.
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Operation of Quantiz er

Step 1. GLVen K source samples, form vector X € )

Step 2. I[§o'mpute g=||X|| and S= X/g.

Step 3. Use gain codebook to quantize g as §.

Step 4. Map Sto f(S) € R<L.

Step 5. Find nearest neighbor f(S) to f(S), using a
nearest neighbor algorithm for A.

Step 6. Compute f~1(f(S)) to identify quantized
shape S A

Step 7. Compute the index of S

> Encoder

Step 8. Transmit index of Qé across (noiseless) } Channel
channel. A
Step 9. Decode index to obtain §S } Decoder

Complexity: 7+ %“L?’Z arithmetic steps per sample, where
R = Rate
k = Dimension
L = Lattice encoding complexity

For Leech lattice, L = 2955 and the complexity is 127+ 2%-



Performance Analysis

1 A
= (ElX—g8°

1 R 1_. A
= (E(@-9)°+ EGFE[S-9°
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Performance Analysis

In order to optimize rate allocation, D = Dy + Dg must be estimated under dif-
fering shape and gain codebook sizes.

Evaluation of Dg

1,
Dy =1 E(9—9)°

Evaluate using fg(r) and table of § outputs, which are known explicitly.

Compute the expectation numerically, if necessary.

Evaluation of Dg

1 -~
Ds= - EGZE||S— §|?

K~
1. E§°=Eg°—E(g—§)°~Eg

2. E||S— §||2 ~ (MSE of underlying lattice, used as (k— 1))

dimensional quantizer for Gaussian source.
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Simulations

Comparison of various quantization schemes for a memoryless Gaussian source.
Values are listed as SONR in decibels.

Method Rate

1 2 3 4 5 6 7
D(R) 6.02 | 12.04 | 18.06 | 24.08 | 30.10 | 36.12 | 42.14
WA24-SVQ 2.44 | 11.02 | 17.36 | 23.33 | 29.29 | 35.27 | 41.33
GLA (kR=8) 10.65 20.98

Lloyd-Max S- | 440 | 9.30 | 14.62 | 20.22 | 26.02 | 31.89 | 37.81
calar
Uniform scalar | 4.40 | 9.25 | 14.27 | 19.38 | 24.57 | 29.83 | 35.13
Entropy coded | 4.64 | 10.55 | 16.56 | 22.55 | 28.57 | 34.59 | 40.61
scalar
UPQ 440 | 9.63
Fischer SVQ | 4.49 | 10.51 | 16.53 | 22.55 | 28.57 | 34.59 | 40.61
(estimated)

TCQ 5,56 | 11.04 | 16.64
256 state

Wilson 128 s- | 5.47 | 10.87 | 16.78
tate

TB-SVQ (4 s- | 5.14 | 11.11 | 16.77
tate)
TB-SVQ (64 | 5.49 | 11.28 | 17.05
dim.,16 state)
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Improvements and Extensions

Vector quantization of the gain:
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Improvements and Extensions

Shape classified quantization

X

S

()

Gain

Quantizer
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Univer sal Quantization

x>

“H, () Y Q Y -HL()

Use intuition of central limit theorem.

mx m Hadamard matrix contains 41 and satisfies HpyH/J = I.

Example: Hy = < _11 :1 )

Lete=Y Y.
X = HIY

= HL(Y+e)

= HI(HwX+¢)

= HIHX+Hle

= X+Hpe
The end-to-end distortion of this system is

E[IX=X|F] = E[(X=X)"(X=X)]

E[(Hne)' (Hne)]
Ele"HmH, €
Ele' ¢

= E[(Y-Y)"(Y-Y)]
= E[IY Y|

Conclusion: we can transform distribution of X to a Gaussian distribution and
use the usual wrapped SVQ without penalty.
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Conclusions

e Performance and complexity of quantizers for memoriless Gaussian sources
Is equivalent to the performance and complexity of quantizers for the uni-
form source.

e Any future improvements to uniform source quantizers yield analogous
improvements for Gaussian source quantizers.

Future work:
e Noisy channel vector quantization

e Trellis encoded spherical vector quantizers
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Interesting Facts about Spheres

In 1885, L. Schlafli published an article containing a formula for the volume of
the k-dimensional unit sphere Q:

Vi /2 (kT}k/zz), if K even
K= —F7viov — ko(k-1)/2
r (%2) 2t (D28 ik is odd
The surface area is given by
Ak = KV
Thus,
T
(Va,Va,Va, ...) = (T 3" )~ (31,42,4953,...)
and

(A2, Az, As,...) = (2T 4T 215, ... ) ~ (6.3,12.6,19.7,26.3,...)
Amazing fact:

Vk and Ay each approach 0 as k — 0.

V is maximum in dimension 5; Ay is maximum in dimension 7.
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Interesting Facts about Spheres

A theorem of Archimedes* says that the surface area of a sphere is equal to the
cylinder that contains it. In fact, a sphere ‘slice’ of thickness t has surface area

21tt, regardless of where the slice is made.

BN

I

This implies the following:

Claim: Let P = (X, Y, Z) be a random vector uniformly distributed on the unit-
radius sphere. Then the distribution of X is uniform on [-1,1].

* He was so proud of the theorem, he had a figure of it inscribed on his tomb-
stone. The tombstone was lost but was rediscovered this century— they recog-
nized the figure!
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Interesting Facts about Spheres

The percentage of the surface area of Earth above 45° N is about 15% of the
total surface area.

A similar ‘polar cap’ on a higher-dimensional sphere consists of points on the
sphere whose last coordinate is at least 1/+/2 or higher.

The fraction of surface area such a polar cap occupies approaches 0 as the di-
mension tends to infinity. In dimension 25, it occupies less than two thousandths
of a percent of the total surface area.

1 /4
fraction = — S 1sin20de
S Jo
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